

What are the properties of the nuclear matter?

Cold nuclear matter ⇒ Hot medium

CGC = THEORY OF GLUON SATURATION

Solution to the classical Yang-Mills equations

$$F_{\mu\nu} \sim rac{Q_s^2}{g}$$
 with $Q_s^2 \sim
ho \sim A^{1/3} \, s^{\lambda}$

Asymptotic freedom: $\alpha_s(Q_s^2) << 1 \Rightarrow$ Perturbation theory is valid!

Factorization theorems are broken at low x and high A, but a new type of universal characteristic of hadron/nucleus wave function emerges: color multipole.

GRIBOV-LEVIN-RYSKIN DIAGRAM

INCLUSIVE LIGHT HADRONS

Multiplicity is determined only by the initial conditions

KLN model

dN/dη vs Centrality at η=0

HADRON MULTIPLICITY

Kharzeev, Levin, Nardi

LIGHT HADRON SPECTRA

Kovchegov, KT, 2001

Kharzeev, Kovchegov, KT, 2005

FROM PATO AA

• Factorization holds for inclusive gluon production in pA (this is the only known case). However, there are no analytical results for AA \rightarrow need models or numerical calculations \rightarrow uncertainties.

If there is a factorization we can infer the magnitude of the cold nuclear matter effect in AA from that in DA

EFFECT OF FRAGMENTATION?

- Fragmentation
 depends only on x_p
- Saturation effect depends only on xA

 \Rightarrow

can be tasted by measurements at different \sqrt{s} .

FIG. 3: Ratio of negative particles production rates in d-Au and pp collisions as function of pr. Data are from [1], solid and dashed curves correspond to calculations with the diquark size 0.3 fm and 0.4 fm respectively.

HEAVY QUARKS

'Heavy' and 'light' are determined by the ratio m²/Q_s²

- Heavy quarks are produced at short distances ~1/2m~0.1 fm (charm) $\Rightarrow \alpha_s <<1$
- However,
 quarkonium binding
 is not perturbative:

$$\frac{M^2 - 4m^2}{4m^2} \ll 1$$

Therefore, $cc \rightarrow J/\psi$ is non-perturbative

INCLUSIVE OPEN HEAVY QUARK

Kopeliovich et al, 2001 KT 2004; Blaizot, Gelis, Venugopalan 2004; Kovchegov, KT 2006

INCLUSIVE OPEN CHARM

KT, 2004, 2007

INCLUSIVE OPEN BEAUTY

KKT model KT, 2007

Need higher p_T measurements to understand the transition to hard pQCD

FACTORIZATION IN OPEN CHARM

Fujii, Gelis, Venugopalan

FACTORIZATION IN J/Y

We cannot infer the the cold nuclear matter effect in AA from DA.

ASSUMING FACTORIZATION IN J/Y

The effective absorption cross sections from fits of Ramona's calculations of PHENIX d+Au R_{CP} data are shown for each shadowing model.

Slide stolen from T. Frawley

Similar results obtained by Lansberg et al 2010.

J/Y PRODUCTION MECHANISMS

Color singlet model

J/ψ production at the Tevatron

Color evaporation model

Production mechanism in pA is different!

Non-relativistic QCD model

J/Y PRODUCTION IN PA

Kharzeev, KT,2005 Kharzeev, Levin, Nardi, KT,2009

Note that the factorization is broken already at the lowest order.

BREAKDOWN OF XF SCALING

$$\sigma_{pA}=A^{\alpha}\sigma_{pp}$$

 α =2/3 plateau: black disk regime.

Additional assumptions:

- J/ψ is non-relativistic. Relativistic correction depends on m but not on energy included in prefactor.
- Parametrically small corrections due to the real part and off-diagonal matrix elements are neglected.

J/Y PRODUCTION IN DA AND AA

Anomalous suppression in AA is probably due to hot medium effects.

- Polarization of J/ψ -?
- \bullet Production of $\chi_{\text{\tiny C}},\,\psi^{,}$ -?
- Compare with DY.

Need these measurements in dA!

It may shed light on J/ψ production in pp ...

DIFFRACTION

Diffraction measures quantum fluctuations of the CGC fields

DIFFRACTION IN PA

KT, 2008

Similar to inclusive hadrons, but much stronger rapidity dependence ⇒ more sensitive to low x.

AZIMUTHAL CORRELATIONS IN PA

KT, 2010

FIG. 1: Correlation function at the central rapidity. Kinematic region is $4 < p_T < 6$, $2 < p_A < p_T$ (all momenta are in GeV), $y_T = 3.1$, $y_A = 3$. Left (right) panel: minbias pp (dAu) collisions. Data from [48].

Need higher pt

FIG. 2: Correlation function at forward rapidities. Kinematic region is $p_T > 4$, $1.5 < p_A < p_T$ (all momenta are in GeV), $y_T = 3.1$, $y_A = 3$. Left (right) panel: the minbias pp (dAu) collisions. Data from [49].

Azimuthal correlations in pA:→ calibration of AA

AZIMUTHAL CORRELATIONS FROM CGC

AZIMUTHAL CORRELATIONS

Rapidity correlations → Kevin Dusling

STRONG MAGNETIC FIELD

- •eB≈ m_{π}^2 >> m_e^2 → above the Schwinger's value!
- •B≈const
- A fascinating opportunity to study the high intensity QED!

- E.g. strong B indices energy loss on fermions that can prevent light quarks from escaping the plasma (at LHC).
- This energy loss is azimuthally asymmetric contributes to V_2 .

SUMMARY

- 1. High p_T , higher statistics measurements in dA will certainly help restrict CGC model parameters and allow better calibration of AA.
 - At high p_T CGC must agree with pQCD. What is the relevant scale?
- 2. R_{dA} at higher/lower energy is needed to resolve the role of fragmentation vs CGC.
- 3. J/ ψ production mechanism remains as mysterious as ever. Measurements of ψ ', χ_c , etc., polarizations and p_T spectra will certainly help.
- 4. Correlations in impact parameter space (diffraction), rapidity and azimuth (v_2) yield a lot of interesting information \Rightarrow but must be calibrated in dA!
- 5. If existence of strong magnetic field B is experimentally confirmed, RHIC will be the first machine in the world to study the high intensity super-critical QED. Don't miss the opportunity!